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The protective effect of selenium against the cadmium-induced oxidative effect in broccoli (Brassica
oleracea) plants was studied. Plants grown in hydroponic culture were supplied with selenium [as
Se(IV)] and cadmium [as Cd(II)], individually or simultaneously. Cadmium accumulation in roots was
noticeably higher than in the aerial parts of the plants, and this effect was even more acute when
selenium was simultaneously added. Cadmium phytotoxicity was evidenced by an increase in the
malondialdehyde (MDA) concentration in the roots and a decrease of photosynthetic pigment and
tocopherol concentration in the aerial parts of the plant. The simultaneous addition of selenium
alleviated cadmium-induced stress in the roots after 40 days of exposition. In the leaves, a more
remarkable decrease of tocopherol and chlorophyll concentration was observed in the cadmium-
enriched plants after 10 days of exposure. The results provided evidence that selenium supplementa-
tion helps the plant to minimize the cadmium oxidant effect. Tocopherol concentration in broccoli
fruit of cadmium-supplied plants was not affected in comparison to control. However, the proportion
of R-tocopherol increases with the addition of selenium. This response is important not only for the
protective effect against oxidative damage in the plant but also in terms of human nutrition.
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INTRODUCTION

Cadmium is an important environmental pollutant, which is
emitted from natural and anthropogenic sources. Its phytotoxicity
depends on different factors such as the exposure time,
concentration, and the plant species (1). This nonessential
element induces stress symptoms, including the appearance of
chlorosis and growth reduction (2, 3). Cadmium also can replace
(1) and interfere with the uptake and translocation of elements
essential to the plant metabolism such as zinc, iron, and
manganese (4).

It is well-known that cadmium causes oxidative stress on
plants although the mechanisms are not completely clear. It is
hypothesized that it induces generation of free radicals and toxic
oxygen species that cause lipid peroxidation, membrane damage,
and inactivation of enzymes, detrimentally affecting the
plant (5, 6).

Despite the fact that cadmium is a nonessential element for
plants, they can readily uptake and accumulate it in their tissues.
This feature makes cadmium a serious problem since the
cadmium-enriched plants can be incorporated in the food chain.

Therefore, this toxic element could be incorporated into the
human diet through edible plants, causing toxicity (7, 8). The
cadmium-induced adverse effect on human health is well
documented,affectingmainlythekidneyandrenalfunctions(9,10).

Selenium, incontrast, isanessentialnutrient forhumans(11,12),
which has been related with immune functions (13). The
antioxidant and anticarcinogenic properties attributed to some
seleno compounds (14, 15) justify the increasing interest in
growing selenium-enriched vegetables, which represent an
important source of this element in the human diet (16).

Selenium has not been recognized as an essential element in
plants, but several studies demonstrate that it has antioxidant
effects (17, 18). Some vegetal species grown in selenium-
enriched media are shown to enhance the photooxidative stress
tolerance of the plant (19, 20). Another beneficial effect has
been observed in potato plants (Solanum tuberosum L.), where
the tuber mass is found to increase due to enhancement of
carbohydrate metabolism when grown in the presence of
selenium (21).

The protective effect of selenium against toxic elements such
as mercury (22–24) and cadmium (25) in animals has also been
widely studied. Some studies carried out in vegetal species
reveal the capacity of selenium to reduce the availability of toxic
metals and alleviate their oxidative effect (26, 27), but the
literature is limited. The beneficial effect of added selenium on
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the plant has been related with the form of the chemical added
to the plant, the most effective form being selenite (27, 28),
preferably at low concentration to avoid selenium-induced
toxicity (26). However, this mechanism has not yet been fully
elucidated, and further experiments are required.

The capacity of the plants to tolerate and accumulate metals
is strongly related to the vegetal species, among other factors.
Broccoli (Brassica oleracea) belongs to the Cruciferae vegetal
family, which has been reported to be quite tolerant to different
metals (29, 30). In recent studies on this plant species carried
out in our laboratory, it has been observed that inorganic
selenium supplied as selenite can be easily transformed by the
plant to selenoamino acids (31). Its distribution within the
broccoli plants justifies the high selenium accumulation capacity
and could be related with the tolerance toward this element.

Therefore, the main aim of this study was to investigate the
protective effect of selenium on cadmium-induced oxidative
stress in the B. oleracea plant. In this order some biochemical
markers of oxidative stress such as chlorophyll, malondialde-
hyde, and tocopherol concentration (19, 32) were measured in
plants exposed to selenium and cadmium supplied individually
or simultaneously. The uptake and translocation of selenium
and cadmium in the plants were also studied. Furthermore,
selenium speciation analyses were performed to find out the
impact of cadmium on selenium metabolism.

MATERIALS AND METHODS

Plant Growth Conditions. Broccoli (B. oleracea) seeds were
germinated in coconut fiber moistened with deionized water. Two weeks
after germination, the seedlings were grown in hydroponic culture (20
plants pre vessel) in vessels containing 0.1 strength Hoagland’s solution
(33) using perlite as substrate. After 5 weeks, Na2SeO3 and CdCl2 (1
mg L-1 each) were added separately and/or in combination to the
culture media. The control group of plants were grown in a parallel
hydroponic culture unexposed to selenium and cadmium.

Plants were harvested after 10 and 40 days of exposition to selenium
and cadmium, and their root and leaves were separated. In the later
harvesting (40 days after exposition), the fruits were also collected.

Total Selenium and Cadmium Determination. Approximately 250
mg of fresh sample of the different parts of the plants harvested after
10 and 40 days of exposition were digested with 2.5 mL of 14 M HNO3

(Merck) and 0.5 mL of 30% H2O2 (Sigma) in a microwave oven (CEM,
Mattheus) for total selenium and cadmium determination. The resulting
solutions were appropriately diluted with Milli Q water and analyzed
by ICP-MS (Agilent HP 4500) according to the conditions given in
Table 1.

Selenium Speciation. Selenium species extraction from roots, leaves,
and fruits of plants collected after 40 days of exposition to selenium
and cadmium and selenium simultaneously supplied was performed
by 2 min of sonication by using an ultrasonic homogenizer (Sonoplus
Bandelin) in 3 mL of water and 10 mg of protease XIV (Sigma) added

to 250 mg of fresh sample. Species separation by anion-exchange
chromatography-ICP-MS was carried out under conditions compiled
in Table 1.

MDA Determination. The concentration of malondialdehyde (MDA),
a lipid peroxidation marker, was determined to investigate the oxidative
effect induced by cadmium in roots by spectrophotometric determination
following the procedure described by Kumar et al. (34).

Chlorophyll Analysis. Chlorophyll concentration was determined
in leaves collected after 10 and 40 days of exposition to selenium and/
or cadmium. Frozen samples (200 mg) were ground, and the pigments
were extracted for 30 min in 4 mL of methanol. The extracts were
centrifuged at 3000 rpm (4 °C), and chlorophyll concentration was
spectrophotometrically determined as described by Lichtenthales
(35).

Tocopherol Analysis. Tocopherols were determined in leaves and
broccoli fruit fresh samples by HPLC-UV (292 and 395 nm) as reported
by Ryynänen et al. (36) by external calibration method.

RESULTS AND DISCUSSION

Cadmium and Selenium Distribution in Broccoli Plants.
The influence of the presence of selenium on cadmium uptake
and its distribution within broccoli plants was studied. Analyses
of these elements along the plants were carried out 40 days
after the addition of cadmium and/or selenium, when broccoli
fruits were collected.

The total concentrations of cadmium and selenium determined
in roots, leaves, and fruits of broccoli plants are given in Table
2. They show that in the cadmium-supplied plants the cadmium
concentration in the roots was about 4–5 times higher than in
the aerial parts (leaves and fruits), which is in good agreement
with the results reported for other plant species (2, 4, 5, 37).
This response implies a low translocation of cadmium within
the plant, which could be a mechanism of this vegetal species
to defend itself toward this toxic metal. When cadmium was
supplied simultaneously with selenium, its accumulation in
roots was even more pronounced than when supplied separately.
This enhanced accumulation in roots coincided with a reduction
of 30% and 55% in leaves and fruits, respectively, which clearly
illustrates that the presence of selenium could enhance the
plant’s tolerance against cadmium and leads to a considerable
reduction of cadmium concentration on the edible part of the
plants. In contrast, added selenium to plants was efficiently
translocated from roots to fruits, and its concentration neither
in roots nor in leaves was affected by the presence of cadmium
(Table 2). However, when plants were simultaneously exposed
to selenium and cadmium, the selenium concentration in fruits
decreased.

The selenium species in roots, leaves, and fruits of the
selenium-supplied broccoli grown with and without cadmium
addition were compared in order to determine the effect of
cadmium on the transformation of the uptaken selenium. The
chromatograms in Figure 1 show that distribution of seleno
species in the different parts of the cadmium-selenium-supplied
plants was quite similar to those obtained for the plants exposed
to selenium, suggesting that cadmium did not affect it. The main
difference found between the selenium species distribution in
plants exposed to both treatments (Se and Se + Cd) was the Se
species concentration in the fruits. In the plants grown in the
presence of selenium and cadmium, selenomethylselenocyste-
ine was the major species, as in selenium-enriched plants (Table
3). However, since the total selenium concentration was reduced
in the presence of cadmium, the species concentration was also
diminished. It is negative from a nutritional point of view, since
the main species in the fruit is selenomethylselenocysteine,
which is one of the most effective chemopreventive selenoamino
acids (38).

Table 1. Experimental Conditions for Total and Se Species Determination
by ICP-MS and LC-ICP-MS, Respectively

ICP-MS Instrumental Parameters
rf power 1250 W
plasma gas flow 15.0 L min-1

auxiliary gas flow 0.73 L min-1

carrier gas flow 0.7 L min-1

isotopes monitored 77Se, 78Se, 82Se, 111Cd, 112Cd, 114Cd

LC Conditions
chromatographic column PRP-X100
mobile phase 10 mM ammonium citrate, pH 5
flow rate 1.0 mL min-1

injection volume 100 µL
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Lipid Peroxidation. The first contact of the plant with
cadmium and selenium occurs through the roots that act as a
barrier. Therefore, the concentration of malondialdehyde (MDA),
an oxidation product of polyunsaturated fatty acids, in the roots
can be taken to indicate the level of oxidative damage caused
by cadmium or selenium in growth media. Figure 2 shows that
10 days after the exposition of the plants to these elements added
separately or in combination MDA in the roots increased about
50%. Interestingly, 30 days later the plants showed a different
reaction pattern depending on the treatment. In the roots of the
cadmium-supplied plants the MDA concentration was the
highest, being 20% higher than in control roots. This response
provides evidence that cadmium causes oxidative stress in
broccoli plants. However, when plants were exposed simulta-
neously to selenium and cadmium, the MDA level noticeably
decreased to the level found in the control. In the plants supplied
only with selenium, the level of MDA was the lowest. These
findings can be attributed to the antioxidative effect of selenium
reported in previous studies (18, 39).

Chlorophyll. Chlorophyll is important not only in edible
plants from a biological point of view but also for the food
quality. Being responsible for the green color of the vegetable
leaves, it is a symbol of quality (40). This photosynthetic
pigment in leaves has been suggested to be negatively affected
by Cd (5).

The chlorophyll (chlorophylls a and b) concentrations in
broccoli leaves 10 and 40 days after exposure to cadmium and
selenium are given in Table 4. They show that after 10 days
the addition of cadmium diminished the chlorophyll concentra-
tion in comparison with control plants. This response can be
attributed to lipid damage in chloroplast membranes (2). The
decrease was more noticeable in the cadmium-supplied plants,
which indicates a higher oxidative effect of cadmium. It could
be attributed to interaction of cadmium with the -SH group
(5) or the induction of modifications in chloroplasts (2, 41).

However, when cadmium and selenium were simultaneously
supplied, a noticeable increase of chlorophyll concentration was
observed, in comparison with plants grown in the presence of
cadmium. This response found at the early exposition stage
illustrates the role of selenium alleviating the cadmium-induced
oxidative stress in chloroplasts (19) obviously through scaveng-
ing of reactive oxygen species that can affect the chlorophyll
(18, 42). At the later stage (after 40 days of exposition) the
behavior was the same, but differences between treatments were
less accused. Microlocalization studies of cadmium in leaves
of Salix Viminalis L. carried out by Vollenweider et al. reveal
that leaf age is an important factor for response to cadmium
stress. The allocation capacity of cadmium in the cell wall in
younger leaves is reduced in comparison to older ones (43).
Therefore, the differences found between the leaf samplings at
days 10 and 40 could be attributed to their differences in the
cadmium storage capacity. It implies that younger leaves are
more affected by cadmium stress.

Tocopherols. Tocopherols are synthesized by photosynthetic
organisms such as plants, algae, and some cyanobacteria (44).
They have several essential functions in plants and are recog-
nized as antioxidants that prevent lipid peroxidation by scaveng-
ing of reactive oxygen species (45). Tocopherols are classified
in four types (R, �, γ, and δ) depending on the number and
position of methyl substituents.

In this study, three forms of tocopherol (R, �, and γ) were
identified in all samples. Total tocopherol concentrations and
the percentage of each form are shown in Figure 3 for the leaves
of the plants exposed to selenium and cadmium for 10 and 40
days and in the fruits for the plants exposed to these elements
for 40 days. As expected, R-tocopherol, which has been reported
as the main tocopherol form in the green parts of the plant (45),
was the major form in both leaves and fruits. In general, a
decrease of total tocopherol concentration in the leaves was
observed when the plants were grown in cadmium-enriched
culture media. This decrease was most remarkable in the plants
supplied separately with cadmium for 10 days. On the contrary,
the simultaneous addition of selenium counteracted the reduction
in tocopherols by about 40%.

The proportion of R-tocopherol was similar in the control
plants and in those supplied with Se separately or in combination
with cadmium. The lowest values were found in the plants
supplied only with cadmium. This cadmium-induced decrease
was associated with an increase of γ-tocopherol species which

Table 2. Concentration of Cadmium and Selenium (mg kg-1 Fresh Weight) in Fruit, Leaves, and Roots of Broccoli Plants after 40 Days of Exposition to
Selenium and Cadmiuma

control supplied with Se supplied with Cd supplied with Se + Cd

Se (mg kg-1) Cd (mg kg-1) Se (mg kg-1) Cd (mg kg-1) Se (mg kg-1) Cd (mg kg-1) Se (mg kg-1) Cd (mg kg-1)

fruit 0.24 ( 0.01 0.27 ( 0.01 27 ( 2 0.40 ( 0.02 0.27 ( 0.02 9.3 ( 0.1 10 ( 1 4.8 ( 0.1
leaves 0.13 ( 0.01 0.14 ( 0.01 2.0 ( 0.1 0.20 ( 0.01 0.14 ( 0.01 9.9 ( 0.8 1.54 ( 0.08 7.5 ( 0.2
roots 0.27 ( 0.01 0.34 ( 0.03 20 ( 1 0.36 ( 0.02 0.28 ( 0.02 39 ( 2 21 ( 1 53 ( 3

a Results are expressed as the mean value ( standard deviation (n ) 3). LOD: Se, 0.5 µg L-1; Cd, 0.1 µg L-1.

Figure 1. LC-ICP-MS chromatograms monitored at m/z ) 82 corre-
sponding to fruit (a, b), leaves (c, d), and roots (e, f) of broccoli pants
subjected to selenium and selenium and cadmium, respectively: (1)
selenomethylselenocysteine, (2) selenomethionine, and (3) selenite.
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is less reactive than the R form (19). However, the percentage
of R-tocopherol concentration increased to the level found in
control and Se-enriched plants when selenium was added
simultaneously with cadmium. It has been reported that an
increase of R-tocopherol favors the stress tolerance of plants as
it favors the scavenging of singlet oxygen species in chloroplasts
(44, 45). Therefore, the increase of R-tocopherol in plants
exposed to selenium and cadmium simultaneously, in compari-
son to those grown only in cadmium, shows evidence that
selenium assists the plants in the adaptation.

In broccoli fruit a noticeable increase of total (and R-toco-
pherol) concentration was observed for plants exposed to
selenium when compared to the control plant and those exposed
to other treatments. Although the presence of selenium in the
culture media did not raise the tocopherol concentration in those
supplied with cadmium, the proportions of tocopherol species
show a higher R-tocopherol percentage when it was supplied
(separately or with cadmium). The increase of tocopherol
concentration in fruits of the selenium-enriched broccoli is
important not only for the protective effect against oxidative
damage in the plant but also from the human nutritional point
of view.

It should be mentioned that the biomass production was not
altered by the presence of selenium and/or cadmium in the
different parts of the plants.

In conclusion, the results obtained illustrate the antioxidant
properties of selenium against cadmium effect in B. oleracea.
Oxidative stress induced by cadmium was characterized by an
increase of malondialdehyde concentration in roots and the
decrease of photosynthetic pigment and tocopherol concentration
in the aerial parts of the plant. The simultaneous addition of
selenium leads to higher concentration of cadmium in roots,
reducing translocation of this toxic element from root to fruit.
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